1. Rumus Umum
Alkanon merupakan golongan senyawa karbon dengan gugus fungsi karbonil (–C=O). Gugus fungsi karbonil terletak di tengah, diapit dua buah alkil. Sehingga alkanon mempunyai rumus umum sebagai berikut : R-CO-R1

2. Tata Nama

Penamaan senyawa-senyawa alkanon atau keton juga ada dua cara yaitu :
1) Menurut IUPAC mengikuti nama alkanannya dengan mengganti akhiran “ ana “ dalam
alkana menjadi “ anom “ dalam alkanon.
2) Dengan cara Trivial yaitu dengan menyebutkan nama kedua gugus alkilnya, kemudian
diikuti akhiran “ Keton “.
Contoh :
Tabel TATA NAMA ALKANON/KETON

Rumus Struktur
Nama IUPAC
Nama Trivial
CH3–CO–CH3
CH3–CH2–CO –CH2–CH3
CH3–CO –CH2–CH2–CH3
CH3–CH2–CO –CH3
2, Propanon
3, Pentanon
2, Pentanon
2, Butanon
Dimetil Keton
Dietil Keton
Metil Propil Keton
Etil Metil Keton


Untuk senyawa-senyawa keton dengan rumus struktur bercabang akan lebih
mudah jika penamaannya menggunakan aturan IUPAC, sebagai berikut :
a) Tentukan rantai utama dengan cara pilih deretan C yang terpanjang dan
mengandung gugus fungsi kemudian beri nama seperti tabel 5.6 di atas.
b) Penomoran rantai utama dimulai dari ujung yang memberikan nomor serendah-
rendahnya bagi atom C gugus fungsi. Aturan selanjutnya sama dengan yang
berlaku pada senyawa hidrokarbon.

3. Sifat – Sifat Alkanon

Beberapa sifat yang dimiliki senyawa-senyawa Alkanon antara lain :
1) Alkanon dengan jumlah C 1 s/d 5 berupa cairan tak berwarna
2) Pada umumnya larut dalam air
3) Alkanon seperti aldehide mempunyai titik didih yang relatif lebih tinggi dari pada
senyawa non polar.
4) Alkanon dapat direduksi oleh gas H2 menghasilkan alkohol sekundernya.

4. Kegunaan Alkanon

Senyawa alkanon yang paling banyak digunakan dalam kehidupan sehari-hari adalah
aseton (propanon). Aseton banyak digunakan sebagai :
1) Pelarut senyawa karbon misalnya : sebagai pembersih cat kuku
2) Bahan baku pembuatan zat organik lain seperti klaroform yang digunakan sebagai obat
bius.
3) Selain aseton, beberapa senyawa alkanon banyak yang berbau harum sehingga
digunakan sebagai campuran parfum dan kosmetika lainnya.

5. REAKSI-REAKSI KETON
Keton adalah golongan senyawa organik yang memiliki rumus umum R-COR' . Reaksi yang dapat terjadi pada keton adalah:
Reduksi
Keton merupakan reduktor yang lebih lemah daripada aldehida. Zat-zat pengoksidasi lemah seperti pereaksi Tollens dan pereksi Fehling tidak dapat mengoksidasi keton. Oleh karena itu, aldehida dan keton dapat dibedakan dengan menggunakan pereaksi-pereaksi tersebut.

Reduksi keton oleh hidrogen akan menghasilkan alkohol sekunder:

date Rabu, 18 Mei 2011

Aldehid sebagai senyawa karbonil. Aldehid senyawa-senyawa sederhana yang mengandung sebuah gugus karbonil - sebuah ikatan rangkap C=O. Aldehid termasuk senyawa yang sederhana jika ditinjau berdasarkan tidak adanya gugus-gugus reaktif yang lain seperti -OH atau -Cl yang terikat langsung pada atom karbon di gugus karbonil - seperti yang bisa ditemukan misalnya pada asam-asam karboksilat yang mengandung gugus -COOH.

Contoh-contoh aldehid

Pada aldehid, gugus karbonil memiliki satu atom hidrogen yang terikat padanya bersama dengan salah satu dari gugus berikut:

  • atom hidrogen lain
  • atau, yang lebih umum, sebuah gugus hidrokarbon yang bisa berupa gugus alkil atau gugus yang mengandung sebuah cincin benzen.

Pada pembahasan kali ini, kita tidak akan menyinggung tentang aldehid yang mengandung cincin benzen.






Pada gambar di atas kita bisa melihat bahwa keduanya memiliki ujung molekul yang sama persis. Yang membedakan hanya kompleksitas gugus lain yang terikat.

Jika kita menuliskan rumus molekul untuk molekul-molekul di atas, maka gugus aldehid (gugus karbonil yang mengikat atom hidrogen) selalunya dituliskan sebagai -CHO - dan tidak pernah dituliskan sebagai COH. Oleh karena itu, penulisan rumus molekul aldehid terkadang sulit dibedakan dengan alkohol. Misalnya etanal dituliskan sebagai CH3CHO dan metanal sebagai HCHO.

Penamaan aldehid didasarkan pada jumlah total atom karbon yang terdapat dalam rantai terpanjang - termasuk atom karbon yang terdapat pada gugus karbonil. Jika ada gugus samping yang terikat pada rantai terpanjang tersebut, maka atom karbon pada gugus karbonil harus selalu dianggap sebagai atom karbon nomor 1.

Sifat-sifat Aldehide

1) Senyawa-senyawa aldehide dengan jumlah atom C rendah (1 s/d 5 atom C) sangat
mudah larut dalam air. Sedangkan senyawa aldehide dengan jumlah atom C lebih dari 5
sukar larut dalam air.

2) Aldehide dapat dioksidasi menjadi asam karboksilatnya

3) Aldehide dapat direduksi dengan gas H2 membentuk alkohol primernya.
Contoh :
a) CH3–CHO + H2 -----------> CH3–CH2–OH
Etanal Etanol

b) CH3–CH2–CHO + H2 -------> CH3–CH2–CH2–OH
Proponal Propanol

Kegunaan Aldehide

Senyawa aldehide yang paling banyak digunakan dalam kehidupan adalah Formal
dehide dan Asetaldehide, antara lain sebagai berikut :
1) Larutan formaldehide dalam air dengan kadar ± 40% dikenal dengan nama formalin. Zat
ini banyak digunakan untuk mengawetkan spesimen biologi dalam laboratorium musium.
2) Formaldehide juga banyak digunakan sebagai :
a) Insektisida dan pembasmi kuman
b) Bahan baku pembuatan damar buatan
c) Bahan pembuatan plastik dan damar sintetik seperti Galalit dan Bakelit
3) Asetaldehide dalam kehidupan sehari-hari antara lain digunakan sebagai :
a) Bahan untuk membuat karet dan damar buatan
b) Bahan untuk membuat asam aselat (As. Cuka)
c) Bahan untuk membuat alkohol

REAKSI-REAKSI ALDEHIDA
Aldehida adalah golongan senyawa organik yang memiliki rumus umum R-CHO. Beberapa reaksi yang terjadi pada aldehida antara lain:
  1. Oksidasi
Aldehida adalah reduktor kuat sehingga dapat mereduksi oksidator-oksidator lemah. Perekasi Tollens dan pereaksi Fehling adalah dua contoh oksidator lemah yang merupakan pereaksi khusus untuk mengenali aldehida. Oksidasi aldehida menghasilkan asam karboksilat. Pereaksi Tollens adalah larutan perak nitrat dalam amonia. Pereaksi ini dibuat dengan cara menetesi larutan perak nitrat dengan larutan amonia sedikit demi sedikit hingga endapan yang mula-mula terbentuk larut kembali. Pereaksi Tollens dapat dianggap sebagai larutan perak oksida (Ag2O). aldehida dapat mereduksi pereaksi Tollens sehingga membebaaskan unsur perak (Ag).
Reaksi aldehida dengan pereaksi Tollens dapat ditulis sebagai berikut

Bila reaksi dilangsungkan pada bejana gelas, endapan perak yang terbentuk akan melapisi bejana, membentuk cermin. Oleh karena itu, reaksi ini disebut reaksi cermin perak.
Pereaksi Fehling terdiri dari dua bagian, yaitu Fehling A dan Fehling B. fehling A adalah larutan CuSO4, sedangkan Fehling B merupakan campuran larutan NaOH dan kalium natrium tartrat. Pereksi Fehling dibuat dengan mencampurkan kedua larutan tersebut, sehingga diperoleh suatu larutan yang berwarna biru tua. Dalam pereaksi Fehling, ion Cu2+ terdapat sebagai ion kompleks. Pereaksi Fehling dapat dianggap sebagai larutan CuO.
Reaksi Aldehida dengan pereaksi Fehling menghasilkan endapan merah bata dari Cu2O.

Pereaksi Fehling dipakai untuk identifikasi adanya gula reduksi (seperti glukosa) dalam air kemih pada penderita penyakit diabetes (glukosa mengandung gugus aldehida).
  1. Adisi Hidrogen (Reduksi)
Ikatan rangkap –C=O dari gugus fungsi aldehida dapat diadisi oleh gas hidrogen membentuk suatu alkohol primer. Adisi hidrogen menyebabkan penurunan bilangan oksidasi atom karbon gugus fungsi. Oleh karena itu, adisi hidrogen tergolong reduksi.

date

1. Rumus Umum
Ester merupakan senyawa turunan asam alkanoat, dengan mengganti gugus hidroksil
(–OH) dengan gugus –OR1. Sehingga senyawa alkil alkanoat mempunyai rumus umum:R-COOR1

R dan R1 merupakan gugus alkil, bisa sama atau tidak.
Contoh :
1) CH3–COO–CH3 R = R1 yaitu CH3
2) CH3–CH2–COO–CH3 R = CH3–CH2(C2H5)dan R1=CH3

2. Tata Nama
Untuk memberi nama senyawa ester, disesuaikan dengan nama asam alkanoat
asalnya, dan kata asam diganti dengan kata dari nama gugus alkailnya.


Rumus Struktur
Nama IUPAC
CH3–COOCH3
CH3–COOCH2CH3
CH3-CH2-COO-CH2-CH3
CH3-CH2-COO-CH2CH2CH3
Metil Etanoat
Etil etanoat
Etil Propanoat
Propil Propanoat

3. Sifat – Sifat Alkil Alkanoat

Senyawa – senyawa ester antara lain mempunyai sifat-sifat sebagai berikut :
1) Pada umumnya mempunyai bau yang harum, menyerupai bau buah-buahan.
2) Senyawa ester pada umumnya sedikit larut dalam air
3) Ester lebih mudah menguap dibandingkan dengan asam atau alkohol pembentuknya.
4) Ester merupakan senyawa karbon yang netral
5) Ester dapat mengalami reaksi hidrolisis

Contoh :
R–COOR1 + H2O -----------> R–COOH + R1–OH
Ester As. Alkanoat Alkohol

6) Ester dapat direduksi dengan H2 menggunakan katalisator Ni dan dihasilkan dua buah
senyawa alkohol.

Contoh :
R–C OOR1 + 2 H2 → R–CH2–OH + R1–OH
Ester Alkohol Alkohol

7) Ester khususnya minyak atau lemak bereaksi dengan basa membentuk garam (sabun)
dan gliserol. Reaksi ini dikenal dengan reaksi safonifikasi / penyabunan.

4. Kegunaan Ester

Ester banyak digunakan dalam kehiduapn sehari-hari antara lain :
1) Amil asetat banyak digunakan sebagai pelarut untuk damar dan lak
2) Esterifikasi etilen glikol dengan asam bensen 1.4 dikarboksilat menghasilkan poliester
yang digunakan sebagai bahan pembuat kain.
3) Karena baunya yang sedap maka ester banyak digunakan sebagai esen pada makanan
antara lain :
Tabel CONTOH AROMA SENYAWA ESTER

Rumus Struktur
Jenis Ester
Aroma
CH3COOC5H11
C4H9COOC5H11
C3H1COOC5H11
C3H7COOC4H9
C3H7COOC3H7
Amil Asetat
Amil Valerat
Amil Butirat
Butil Butirat
Propil Butirat
Buah Pisang
Buah Apel
Buah Jambu
Buah Nanas
Buah Mangga

date

1. Rumus Umum
Asam alkanoat atau asam karboksilat merupakan golongan senyawa karbon yang
mempunyai gugus fungsional –COOH terikat langsung pada gugus alkil, sehingga rumus
umum asam alkanoat adalah : R-COOH

2. Tata Nama
Penamaan senyawa-senyawa asam alkanoat atau asam karboksilat juga ada dua cara
yaitu :
1) Menurut IUPAC : mengikuti nama alkananya dengan menambahkan nama asam di
depannya dan mengganti akhiran “ ana “ pada alkana dengan akiran “ anoat “ pada
asam Alkanoat.
2) Menurut Trivial, penamaan yang didasarkan dari sumber penghasilnya.

Contoh:
Tabel PENAMAAN SENYAWA ASAM KARBOKSILAT


Rumus Struktur
Nama IUPAC
Nama Trivial
Sumber
HCOOH
CH3COOH
C2H5COOH
CH3(CH2)COOH
CH3(CH2)3COOH
CH3(CH2)4COOH
Asam Metanoat
Asam Etanoat
Asam Propanoat
Asam Butanoat
Asam Rentanoat
Asam Heksanoat
Asam Format
Asam Asetat
Asam Propionat
Asam Butirat
Asam Valerat
Asam Kaproat
Semut (Formica)
Cuka (Asetum)
Susu (Protospion)
Mentega (Butyrum)
Akar Valerian (Valere)
Domba (Caper)


Untuk senyawa-senyawa asam alkanoat yang mempunyai rumus struktur bercabang
aturan penamaan IUPAC adalah sebagai berikut :
1) Tentukan rantai utama dengan memilih deretan C paling panjang dan mengandung
gugus fungsi –COOH, kemudian diberi nama seperti pada tabel di atas.
2) Penomoran atom C dimulai dari atom C gugus fungsi, sedang aturan selanjutnya sama
dengan yang berlaku pada senyawa-senyawa hidrokarbon.
Contoh :
a) CH3–CH2–CH (CH3)–COOH Asam 2, metil Butanoat

3. Sifat – Sifat Asam KarboksilatSecara umum senyawa-senyawa asam alkanoat atau asam karboksilat mempunyai
sifat-sifat sebagai berikut :
1) a) Asam alkanoat yang mengandung C1 sampai C4 berbentuk cairan encer dan larut
sempurna dalam air
b) Asam alkanoat dengan atom C5 sampai C9 berbentuk cairan kental dan sedikit larut
dalam air
c) Asam alkanoat suku tinggi dengan C10 atau lebih berbentuk padatan yang sukat
larut dalam air.
2) Titik didih asam alkanoat lebih tinggi dibandingkan titik didih alkohol yang memiliki
jumlah atom C yang sama.
3) Asam alkanoat pada umumnya merupakan asam lemah. Semakin panjang rantai
karbonnya semakin lemah sifat asamnya.
Contoh :
HCOOH Ka = 1,0 . 10–4

CH3COOH Ka = 1,8 . 10–5

CH3CH2COOH Ka = 1,3 . 10–5

4) Asam alkanoat dapat bereaksi dengan basa menghasilkan garam. Reaksi ini disebut
reaksi penetralan.
a) CH3COOH + NaOH -------------> CH3COONa + H2O
Asam Etanoat Natrium Etanoat

5) Asam alkanoat dapat bereaksi dengan alkohol menghasilkan senyawa ester. Reaksi ini
dikenal dengan reaksi esterifikasi.
a) CH3COOH + CH3–OH ------------------> CH3COOHCH3 + H2O
Asam Etanoat Metanol Metil Etanoat

b) CH3CH2COOH + CH3CH2–OH -------------> CH3CH2COOCH3 + H2O
Asam Propanoat Etanol Etil Propanoat

4. Kegunaan Asam Alkanoat
Penggunaan asam alkanoat dalam kehidupan sehari-hari antara lain :
1) Asam format (asam metanoat) yang juga dikenal asam semut merupakan cairan tak
berwarna dengan bau yang merangsang. Biasanya digunakan untuk :
a) menggumpalkan lateks (getah karet)
b) obat pembasmi hama
2) Asam asetat atau asam etanoat yang dalam kehidupan sehari-hari dikenal dengan nama
asam cuka. Asam cuka banyak digunakan sebagai pengawet makanan, dan penambah
rasa makanan (baksa dan soto)
3) Asam sitrat biasanya digunakan untuk pengawet buah dalam kaleng
4) Asam stearat, asam ini berbentuk padat, berwarna putih. Dalam kehidupan sehari-hari
terutama digunakan untuk membuat lilin.

5. REAKSI ASAM KARBOKSILAT
Asam karboksilat adalah golongan senyawa organik yang memiliki rumus umum R-COOH. Beberapa reaksi yang dapat terjadi pada asam karoksilat antara lain:
  1. Reaksi penetralan
Asam karboksilat bereaksi dengan basa membentuk garam dan air.

Garam natrium atau kalium dari asam karboksilat suku tinggi dikenal sebagai sabun. Sabun natrium disebut sabun keras, sedangkan sabun kalium disebut sabun lunak. Sebagai contoh, yaitu natrium stearat (NaC17H35COO) dan kalium stearat (KC17H35COO).
Asam alkanoat tergolong asam lemah, semakin panjang rantai alkilnya, semakin lemah asamnya. Jadi, asam alkanoat yang paling kuat adalah asam format, HCOOH. Asam format mempunyai Ka=1,8x10-4. Oleh karena itu, larutan garam natrium dan kaliumnya mengalami hidrolisis parsial dan bersifat basa.
  1. Reaksi Pengesteran
Asam karboksilat bereaksi dengan alkohol membentuk ester. Reaksi ini disebut esterifikasi (pengesteran).

date

Sifat Eter
Sifat-sifat eter adalah sebagai berikut.
Pada suhu rendah mudah menguap dan uapnya mudah terbakar.
Sukar larut dalam air dan berbau khas.
Titik didihnya lebih rendah daripada alkohol yang jumlah atom C-nya sama.
Tidak bereaksi dengan logam Na / K.
Tidak bereaksi dengan PCl3 / PCl5.
Dapat diuraikan oleh asam halogenida (HX) menjadi alkil halogenida dan alkohol.
Eter dapat melarutkan lemak, minyak, resin, alkaloid, bahkan zat-zat anorganik seperti misalnya brom, iod, dan beberapajenis garam

Membedakan Alkohol dengan Eter
Alkohol dan eter merupakan isomer fungsi dengan rumus umum CnH2n+2O. Namun demikian, kedua homolog ini mempunyai sifat-sifat yang berbeda nyata, baik sifat fisis maupun sufat kimia. Alkohol mempunyai titik cair dan titik didih yang jauh lebih tinggi daripada eter yang sesuai. Hal itu terjadi karena gugus fungsi alkohol (-OH) bersifat polar dan menyebabkan adanya ikatan hidrogen antarmolekul alkohol, sedangkan eter bersifat kurang polar dan tidak terdapat ikatan hidrogen.
Perbedaan yang cukup nyata juga tampak pada kelarutannya dalam air. Kelarutan alkohol dalam air jauh lebih besar daripada eter. Hal ini juga berkaitan dengan gugus fungsi alkohol yang bersifat polar. Antara alkohol dan air dapat membentuk ikatan hidrogen.
Metanol dan etanol larut sempurna dalam air. Kelarutan alkohol berkurang seiring dengan bertambah panjangnya rantai karbon. Hal itu terjadi karena rantai alkil merupakan gugus yang nonpolar, sehingga interaksi dengan air makin lemah. Hal yang serupa terjadi pada eter, tetapi kelarutan eter jauh lebih kecil.
Secara kimia, alkohol dan eter dapat dibedakan berdasarkan reaksinya dengan logam natrium dan fosforus pentaklorida.
Alkohol bereaksi dengan logam natrium membebaskan hidrogen, sedangkan eter tidak bereaksi.
Alkohol bereaksi dengan PCl5 menghasilkan gas HCl, sedangkan eter bereaksi tetapi tidak menghasilkan HCl.

Kegunaan Eter
Kegunaan eter adalah sebagai berikut.
Sebagai pelarut zat organik, misalnya lemak dan damar.
Sebagai obat bius dalam bidang kedokteran. Eter yang terpenting adalah dietil eter yang dalam kehidupan sehari-hari maupun dalam perdagangan disebut eter. Kegunaan utama eter adalah sebagai pelarut dan obat bius (anestesi) pada operasi. Dietil eter adalah obat bius yang diberikan melalui pernapasan, seperti halnya kloroform atau siklopropana. Metil ters-butil eter (MTBE) digunakan sebagai aditif bensin, yaitu untuk menaikkan nilai oktan.

date

Eter/Alkoksi Alkana

1.Rumus Umum
Eter atau alkoksi alkana adalah golongan senyawa yang mempunyai dua gugus alkyl yang terikat pada satu atom oksigen. Dengan demikian eter mempunyai rumus umum :R–O–R1dimana R dan R1adalah gugus alkil, boleh sama boleh tidak
Contoh :
CH3–CH2–O–CH2–CH3
R = R1(eter homogen)
CH3–O–CH2–CH2–CH3
R-R1(eter majemuk)
2.Penamaan Eter
Ada dua cara penamaan senyawa-senyawa eter, yaitu :
1) Menurut IUPAC, eter diberi nama sesuai nama alkananya dengan awalan “ alkoksi “ dengan ketentuan sebagai berikut :
– rantai karbon terpendek yang mengikat gugus fungsi –O– ditetapkan sebagai gugus fungsi alkoksinya.
– rantai karbon yang lebih panjang diberi nama sesuai senyawa alkananya
2) Menurut aturan trivial, penamaan eter sebagai berikut : menyebutkan nama kedua
gugus alkil yang mengapit gugus –O– kemudian diberi akiran eter.
Contoh : Tabel 5.3 TATA NAMA ETER
Rumus Struktur Eter Nama IUPAC Nama Trivial
CH3–CH2–O–CH2–CH3 Etoksi etana Dietil eter / etil etil eter
CH3–O–CH2–CH2–CH3 Metoksi propane Metil propil eter
CH3–CH2–O–CH2–CH2–CH3 Etoksi propane Etil propil eter
3. Sifat-Sifat Eter
Berbeda dengan senyawa-senyawa alkohol, eter mempunyai sifat-sifat sebagai berikut :
1) Titik didih rendah sehingga mudah menguap
2) Sulit larut dalam air, karena kepolarannya rendah
3) Sebagai pelarut yang baik senyawa-senyawa organik yang tak larut dalam air
4) Mudah terbakar
5) Pada umumnya bersifat racun
6) Bersifat anastetik (membius)
7) Eter sukar bereaksi, kecuali dengan asam halida kuat (HI dan H Br)
4. Kegunaan Eter
Senyawa-senyawa eter yang umum digunakan dalam kehidupan sehari-hari antara
lain :
1) Dietil eter (etoksi etana) biasanya digunakan sebagai pelarut senyawa-senyawa organik.
Selain itu dietil eter banyak digunakan sebagai zat arestesi (obat bius) di rumah sakit.
2) MTBE (Metil Tertier Butil Eter),Senyawa eter ini digunakan untuk menaikan angka oktan besin menggantikan kedudukan TEL / TML, sehingga diperoleh bensin yang ramah lingkungan. Sebab tidak menghasilkan debu timbal (Pb2+) seperti bila digunakan TEL / TML
5.BeberapaReaksi Eter
Eter adalah golongan senyawa organik yang memiliki rumus umum R-O-R'. Beberapa reaksi dari eter diantaranya adalah:
  1. Pembakaran
Eter mudah terbakar membentuk gas karbon dioksida dan uap air.
Contoh:
  1. Reaksi dengan Logam Aktif
Berbeda dengan alkohol, eter tidak bereaksi dengan logam natrium (logam aktif).
  1. Reaksi dengan PCl5
Eter bereaksi dengan PCl5, tetapi tidak membebaskan HCl.

  1. Reaksi dengan Hidrogen Halida (HX)
Eter terurai oleh asam halida, terutama oleh HI. Jika asam halida terbatas:

Jika asam halida berlebihan:

  1. Membedakan Alkohol dengan Eter
Alkohol dan eter dapat dibedakan berdasarkan rekasinya dengan logam natrium dan fosforus pentaklorida.
  • Alkohol bereaksi dengan logam natrium membebaskan hidrogen, sedangkan eter tidak bereaksi.
  • Alkohol bereaksi dengan PCl5 menghasilkan gas HCl, sedangkan eter bereaksi tetapi tidak menghasilkan HCl.

date

1. Pengertian Gugus fungsi
Bandingkan struktur etana dan etanol berikut:
H H                    
       | |
     H-C-C-H
       | |
       H H

       H H
       | |
     H-C-C-OH 
       | |                   
       H H
Dari kedua struktur di atas dapat kita lihat bahwa molekul etanol (C2H5OH) sama dengan molekul etana (C2H6) kecuali satu atom H diganti oleh gugus OH. Gugus pengganti ini sangat menentukan sifat senyawa yang bersangkutan, baik sifat fisis maupun sifat kimia. Etanol mempunyai sifat yang berbeda sekali dengan etana, tetapi bermiripan dengan methanol, senyawa lain dengan gugus pengganti yang sama. Itulah sebabnya gugus pengganti itu juga disebut gugus fungsi yang artinya gugus penentu sifat.
2. Senyawa Turunan Alkana
Senyawa turunan alkana adalah senyawa yang dapat dianggap berasal dari alkana dimana satu atau lebih atom H diganti oleh gugus fungsi tertentu. Beberapa golongan senyawa turunan alkana yang akan dibahas berikut ini.

B. Alkohol dan Eter

1. Alkohol
a. Jenis-jenis Alkohol
Berdasarkan jenis atom karbon yang mengikat gugus OH, alkohol dibedakan atas alkohol primer, alkohol sekunder, dan alkohol tersier. Dalam alkohol primer, gugus OH terikat pada atom karbon primer, dan seterusnya.
b. Tata Nama Alkohol
Nama IUPAC alkohol diturunkan dari nama alkana yang sesuai dengan mengganti akhiran a menjadi ol.
CH3- CH2- CH2- OH 1-Propanol
Selain nama IUPAC, alkohol sederhana juga mempunyai nama lazim, yaitu alkil alkohol.
CH3- CH2- OH etil alkohol
c. Sifat-sifat Alkohol
o Sifat Fisis
Alkohol mempumyai titik cair dan titik didih yang relatif tinggi. Pada suhu kamar, alkohol suku rendah berbentuk cairan yang bersifat mobil, suku sedang berupa cairan kental, sedangkan suku tinggi berbentuk padatan.
o Sifat Kimia
Gugus OH merupakan gugus yag cukup reaktif sehingga alkohol mudah terlibat dalam berbagai jenis reaksi. Reaksi dengan logam aktif misalnya logam natrium dan kalium membentuk alkoksida dan gas hidrogen. Alkohol sederhana mudah terbakar membentuk gas karbon dioksida dan uap air. Jika alkohol dipanaskan bersama asam sulfat pekat akan mengalami dehidrasi (melepas molekul air) membentuk eter atau alkena.
d. Kegunaan Alkohol dalam kehidupan sehari-hari
Alkohol juga dapat digunakan sebagai pengawaet untuk hewan koleksi (yang ukurannya kecil) alkohol.Alkohol dapat digunakan sebagai bahan bakar otomotif. Ethanol dan methanol dapat dibuat untuk membakar lebih bersih dibanding gasoline atau diesel. Alkohol dapat digunakan sebagai antifreeze pada radiator. Untuk menambah penampilan Mesin pembakaran dalam, methanol dapat disuntikan kedalam mesin Turbocharger dan Supercharger. Ini akan mendinginkan masuknya udara kedalam pipa masuk, menyediakan masuknya udara yang lebih padat.
2. Eter
a. Tata Nama Eter
Nama lazim dari eter adalah alkil alkil eter, yaitu nama kedua gugus alkil diikuti kata eter ( dalam tiga kata yang terpisah ).
CH3- CH2- O - CH3 Metil etil eter
Nama IUPAC adalah alkoksialkana. Dalam hal ini eter dianggap sebgai turunan alkana yang satu atom H alkana diganti oleh gugus alkoksi ( -OR ).
CH3-CH2-O-CH3 metoksietana
b. Sifat-sifat Eter
o Sifat Fisis
Titik cair dan titik didih eter jauh lebih rendah daripada alkohol. Demikian juga dalam hal kelarutan, eter lebih besar sukar larut dalam air daripada alkohol. Pada umumnya eter tidak bercampur dengan air. Pada suhu kamar, kelarutan etil eter dalam air hanya 1,5 %. Hal ini terjadi karena molekul eter kurang polar.
o Sifat Kimia
Eter mudah terbakar membentuk gas karbon dioksida dan uap air. Eter tidak beraksi dengan logam natrium. Eter terurai oleh asam halida, terutama oleh HI.
c. Kegunaan Eter dalam kehidupan sehari-hari
Eter yang terpenting adalah etil eter yang dalam kehidupan sehair-hari maupun dalam perdagangan disebut eter. Kegunaan utama eter adalah sebagai pelarut dan obat bius (anestesi) pada operasi. Etil eter adalah obat bius yang diberikan melalui pernapasan, seperti halnya kloroform atau siklopropana.

date